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Abstract: Under the Telecommunications Act, estimates of local distribution costs may be used
to help quantify the subsidy for specified local services whose costs exceed their tariffed rates
and as a guide for the pricing of unbundled network elements. The most widely-circulated
model for estimating these costs, the HAl model, uses a particular procedure to calculate the
distribution network and cable length that is required to serve a cluster of customers. We
compare the HAl procedure with the minimum spanning tree (MST), which gives the shortest
distance for connecting a set of locations. For each cluster in Minnesota we calculated the
distribution length with the HAl procedure and the length of the MST. We find that the HAl
length is shorter than the MST length in 77% of the main clusters. In low-density areas, the
HAl length is less than the MST length for 81 % of the main clusters.



THE COST OF THE LOCAL TELECOMMUNICATION NETWORK

1. INTRODUCTION

The implementation of the Telecommunications Act of 1996 entails measurement of

the costs of supplying telecommunications services for at least two distinct purposes: (i)

pricing unbundled network elements and interconnection and (ii) quantifying the subsidy

contained in current prices for local exchange services. The Federal Communications

Commission (FCC, 1997) has specified that these costs are to represent forward-looking

efficient costs - that is, the costs that would be incurred by a carrier that provided these

elements and services using least-cost methods at today's prices and technology. Since these

costs are not directly observable, "cost proxy models" have been developed to estimate them.

The cost proxy model that has been submitted most frequently in regulatory proceedings is

the HAl model (1998).

Much of the debate on the adequacy of such models for the purpose for which they are

offered is centered on how the models determine the local distribution network. I The current

network may not be the most efficient for serving today's known demand since, e.g., the

network was constructed incrementally over time as demand grew rather than being

configured optimally for the current number and location of customers. Therefore, instead of

costing the current distribution network, the models construct a hypothetical network that

links each customer to a wire center. The location of customers and the layout of the network

that connects customers to the wire centers have a significant impact on the estimated costs,

because these assumptions determine the predicted loop length.

The HAl model uses a particular procedure, described below, for determining the

distribution network and thus the total cable required to serve customers. Recently, several

parties have suggested that this procedure under-estimates the amount of cable that is needed

to link customers to the wire centers, leading to lower-than-accurate costs (Prisbrey, 1998;

I The local distribution network is a component of the local exchange network. It addresses the portion of the
network extending from Serving Area Interfaces (SAIs. I.e., the interconnect between feeder and distribution)
to the customers' premises.



Staihr, 1998). We investigate this issue empirically by comparing the HAl distribution

network procedure to the minimum spanning tree (MST). A MST is a mathematical graph

theory construct used to connect a set of points at the least possible length of total connecting

lines (see, e.g., Flood, 1977; Biggs, 1994.) As such, the MST provides a lower limit (subject

to caveats described below) to the distribution cable that is needed to serve a cluster of

customers.

Our analysis is performed for GTE's territory In Minnesota. The HAl model

identifies over a thousand clusters of customers in the territory. For each cluster, we calculate

the total cable length implied by the minimum spanning tree and compare this length with

that obtained by the HAl procedure. We find that lengths in the HAl model are considerably

less than the length of the minimum spanning tree. This result implies that the HAl

procedure provides less distribution cable, and hence lower costs, than is physically possible

to use in serving the customers.

Our findings are consistent with, and generalize, those of Staihr (1998). He reported

that, for several clusters of customers in Nevada, the distribution cable obtained by the HAl

procedure is less than that of the minimum spanning tree, by as much as a factor of nine.

Mercer and Klick (1998) responded to his finding by stating that his analysis examined only a

very few clusters in one area such that the results cannot be considered representative. Our

analysis examines a different area and includes all clusters in the area.

II. DISTRIBUTION NETWORK IN THE HAl MODEL

The HAl model identifies the locations of customers and then groups these locations,

following a set of engineering rules, into clusters. In our comparison with minimum

spanning trees, we take the location and clustering of customers as given by the HAl model,

and therefore do not describe here the location and clustering process. Given a cluster of

locations, the HAl model determines distribution network in a series of steps. We describe

these steps through an example. Figure I illustrates a set of customer locations that constitute

a cluster.



Figure 1: Locations in a cluster
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Figure 2: Convex Hull around locations

Area of convex hull

3.40 sq. miles

The first step of the HAl procedure is to detennine the convex hull
2

that contains all of

the locations in the cluster. This convex hull is shown in Figure 2. The area of the convex

hull is calculated; in our example, the area of the convex hull is approximately 3.40 square

miles.

Next, the process detennines the smallest rectangle that contains the locations, called

the "minimum bounding rectangle" (MBR). This MBR is shown in Figure 3. The "aspect

ratio" of the MBR is calculated by dividing the length of the MBR by its depth. In our case

the aspect ratio is 0.802.

2 The convex hull of a set is the smallest convex set containing it. A set is convex if, given two points in the set,
the straight line segment joining the two points is also contained in the set.



Figure 3: Minimum Fitting Rectangle around locations

Length (L=3.33)

Depth
(D=2.67)

Aspect ratio = OIL = 0.802

The algorithm then constructs a rectangle with the same area as the convex hull (3.40

sq. miles) and the same aspect ratio as the minimum bounding rectangle (0.802). This

rectangle for our example, depicted in Figure 4, is 2.06 miles wide and 1.65 miles deep.



Figure 4: Distribution for Cluster

Rectangle:
2.06 x 1.65

Branch cable:
0.5375 miles

Intuitively, the distribution network is designed as if the customers were located on

equal-sized lots within this rectangle, with each lot being twice as deep as wide. In our

illustration, each lot is 0.493 miles wide and 0.986 miles deep. The lots cannot be shown on

Figure 4 because they do not fit into the rectangle. Lots can only be represented within the

rectangle when the number of locations and the aspect ratio of the rectangle allow such

representation. For example, if there were eight locations in the cluster and the aspect ratio

for the rectangle were 1.0 (half the aspect ratio of the lots), then the rectangle would be filled

by two rows of four lots each. Similarly, if there were 16 locations and the aspect ratio were

2.0, the rectangle would be filled with four rows of four lots each. Generally, however, the

aspect ratio and number of locations do not enable the lots to be represented as rows in the

rectangle.

The distribution cables consist of backbone cable, branch cable, and drop cable. The

length of backbone cable is calculated as the depth of the rectangle (1.65 in our illustration)

minus the depth of two lots (2 times 0.986), with a minimum of zero. With several rows of



The length of each branch cable is half of the width of the rectangle (in our

illustration, 2.06 divided by 2) minus the width of a lot (0.493). With lots in rows, this length

corresponds to the distance from the middle of the rows to within one lot of the end of the

row. In our illustration, each branch cable is 0.5375 miles long. The two branch cables have

a total length of 1.075.

lots within the rectangle, this length corresponds to having backbone cable run vertically to

connect the top and bottom rows (i.e., from the bottom edge of the top row of lots to the top

edge of the bottom row oflots.) The same formula is applied when, as in our illustration, the

lots do not fall in rows that fill the rectangle. In our illustration (as when there are two or

fewer rows of lots), there is no backbone cable.

The number of branch cables is calculated as the depth of the rectangle divided by the

depth of two lots, rounded up to the next higher integer, times two. With lots falling into

rows that fill the rectangle, this number corresponds to having branch cables running

horizontally between every two rows of lots, with one cable running "east" from the middle

of the rows and another cable running "west" from the middle. As with backbone cable, the

formula applies for any number of lots and aspect ratio. In our illustration, there are two

branch cables.

..,

1.075 miles

o

0.20 miles

Total Backbone Cable Length =

Total Branch Cable Length =

Total Drop Cable Length =

Finally, drop cables connect each customer to the branch cables. The length of the

drop cables is determined within the HAl procedure through look-up tables based on the

population density of the census block that contains the cluster. The density zone of the

cluster is not used at this point. For our illustration, we assume that the cluster falls in a low­

density category, for which the drop lengths are 150 feet. With seven customer locations, the

total amount of drop cable is 0.20 miles (150 feet x 7 / 5280 feet per mile.)

The total distribution length resulting from this process is the sum of the length of the

backbone cable, the branch cables, and the drop wire for all seven locations:
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Minimum spanning trees have also been called shortest path or minimal connector

problems (e.g., Chartrand, 1985.) The issue is common for railroads where the goal is to

construct a railroad system at least cost. Other common applications include computer

circuits, long-distance telephone lines, delivery routes and mail routings that seek to find a

minimum total length of routes that will connect all desired locations.

Numerous algorithms have been developed to compute a MST. Perhaps the simplest

algorithm, at least from a pedagogical perspective, is Kruskal's (see, e.g., Sedgewick, 1988).

Start by calculating the distance between each pair of points and rank-ordering the pairs in

terms of the distance between them, from closest to farthest. Identify the first pair of points

on this list (i.e., the pair that are closest) and connect them with a line. These two points

constitute the current spanning tree and the line between them is called an "edge." Now

consider the second pair on the list and connect them. If one of the points in the second pair

was also in the first pair (e.g., the first pair is <a,b> and the second is <b,c», then the current

spanning tree has three points in total (a,b,and CI, with two edges connecting the three points

(from a to b and from b to c.) Otherwise (i.e., if the points in the second pair are distinct from

those in the first pair, such as <a,b> and <c,d», then the current spanning tree is disjoint,

consisting of four points (a,b,c,d) with two edges connecting the points in each pair (from a to

b and from c to d) but without the two pairs being connected to each other (a and b are not

connected to c and d.) Consider now the third pair on the list. Both points in this pair might

already be in the spanning tree (for example, if the third-ranked pair is <a,c> in either of the

cases above.) In this case, do not extend the spanning tree and move onto the fourth-ranked

pair. If, on the other hand, at least one of the points is not in the current spanning tree (e.g., if

<d,e> is the third-ranked pair), then connect the pair with a line, such that they become part of

the current spanning tree. Move to the fourth-ranked pair, and do the same: ifboth points are

already in the current spanning tree, ignore the pair and move on; otherwise, connect them,

Total Distribution Length =

III. MINIMUM SPANNING TREES

1.275 miles



thereby expanding the spanning tree. Continue until all points have been added to the

spanning tree. Note that, while all points in the spanning tree will be connected at the end of

the algorithm, in intennediate steps the Kruskal algorithm can be working on many disjoint

sections of the tree. These sections are joined before the algorithm completes. This

algorithm is a type of a "greedy" algorithm, because it chooses at each step the shortest edge

to add to the MST.3

The algorithm developed by Prim (1957) builds a tree by adding one point at a time to

the current spanning tree. Start by connecting the two closest points. Of the remaining

points, find the one that is closest to either of the two points in the current tree. Connect this

third point to whichever of the first or second points it is closest to, thereby expanding the

tree to three points. Continue this procedure, finding the shortest distance between any

already-connected point and any not-yet-connected point, and connecting those points. Note

that the current spanning tree is fully connected in each step, unlike the Kruskal procedure

which can have disjoint sections in intermediate steps. While the MST resulting from

different methods might differ, there is only one shortest total length. That is, the length of

the MST will be identical regardless of algorithm

Figure 5, illustrates the minimum spanning tree for our example of customer

locations.

3 Greedy algorithms make locally optimal choices, choosing the best alternative at each step in the process
(Biggs, 1994). In many circumstances, MST's being an important case, a sequence oflocally optimal choices
results in a globally optimal solution.



Figure 5: Minimum Spanning Tree

There are two limitations to the MST in context of determining the forward-looking

costs of a telephone network. First, telephone networks are not constructed by directly

linking one subscriber. Rather, cable is run along a path, and short drops from terminals

connect this cable to subscribers. Those terminals represent additional points in the network,

and if optimally placed, the addition of these points can reduce the total length of the

distribution network. Stated in terms of spanning trees, the MST for a given set of points

may have greater total length than the MST for these points augmented by some appropriately

chosen other points. For example, consider four points at the comers of a lxl square. The

MST for these four points traces out three sides of the square, for a total length of J.

However, the four points can be also connected with two diagonal lines from each corner to

the opposite comer, using a connection point in the middle of the square (where the two

diagonals intersect.) The length of each diagonal is SQRT(2), such that the total length is

2*SQRT(2), which is less than the length of the MST without adding points.

1{\



The construct that calculates a MST by allowing extra nodes is known as a Steiner

Minimum Tree (Coumant, 1941; Balakrishnan, 1989). Du and Hwang (1990) proved a 22­

year-old conjecture of Gilbert and Pollak (1968) which says that the minimum ratio between

the length of a Steiner minimum tree and a minimum spanning tree is SQRT 3/2. That is,

adding extra interconnection points cannot reduce the total length of the tree by more than

about 13 percent. In most situations, the difference is much less than 13 percent. For the

example of the Ix1 square given in the previous paragraph, the Steiner tree is six percent

shorter than the MST without the additional point.

The second limitation of MSTs for representing telecommunication networks is that

the line segments of a MST run directly from one point to another. They do not account for

geographical obstacles such as rivers, mountains, lakes, freeways, rights-of-way, etc. The

MST is calculated using airline miles (the straightest distance between points) rather than the

actual amount of cable (route miles) that would be required to connect customers given the

actual geography. This issue arises in many contexts regarding telecommunication networks,

and commonly used air-to-route ratios conversion factors have been developed. Generally,

airline miles for cable are converted to route miles using ratios between 1.3 and 1.6, with

1.414 being perhaps the most common. 4 That is, the minimum possible length of cable to

serve a group of customers is generally 30% or more greater, due to geographical obstacles,

than the length of the MST.

IV. COMPARISON

The definition of clusters and the identification of customers' locations within clusters

are specified by the HAl model, and we take them as given. We examined all clusters in

GTE's territory in Minnesota. For each cluster, we identified the MST using the Prim

algorithmS and calculated the total length of the tree. We compare this number to the total

4 The route-to-air ratio of 1.414 is simply the square root of 2. It assumes that instead of direct connection of
two points, the points are joined rectilinearly.

5 We used a program developed by Stopwatch Maps, Inc .. a Geographic Information System consulting fim1 in
St. Louis, Missouri.



distribution cable length, including drop wires, that is produced by the HAl model.l> Our

results are given in Table 1 and summarized below.

Table 1: Distribution of Ratio of HAl Length to MST Length

Total Number Number Number

number of of clusters with of clusters with of clusters with

clusters ratio below 1 ratio below .87 ratio below .5

Main 890 682 620 258

clusters

Other 248 1147 114 114

(outlier) clusters

Main 839 680 618 258

clusters in lowest

two density zones8

The HAl model distinguishes "main" clusters, which contain five or more locations,

and other clusters which contain four or fewer locations.9 For the main clusters, the total

distribution length from the HAl procedure is less than the length of the MST in 682 (77%) of

the 890 clusters in Minnesota. For 620 (70%) main clusters, the HAl length falls below the

6 We calculated the drop length in the HAL model using two different methodologies: 1) by adding to the HAl
reported total distribution length the total drop length based on the number of locations; and 2) by adding to

the HAL reported total distribution length the total drop length based on the sum oftotal number ofhouseholds
and businesses. The results for the two methods of calculating drop cable length differed only mimmally
(often less than 1 percent); thus, we report our findings based on the first methodology only.

7 For outliers with one location the length of the MST is by definition zero. In these cases, HAl's distribution
length is necessarily longer.

8 The lowest two density zones in HAL consist of areas that contain 0-5 lines per square mile and 5-100 lines per
square miles.

9 Main clusters account for 74 percent of the customer locatIOns and 80 percent of the distribution cable in the
HAL model.

1'1



MST length by more than 13 percent; that is, for 70% of the main clusters, the HAl procedure

gives shorter lengths than could be physically possible even if one assumes that there are no

physical impediments, such that the air-to-route ratio is one, and that the theoretically

maximum benefit of adding connection points for a Steiner tree is attained. In some clusters,

the HAl procedure produces length estimates that are less than 10% percent of the MST

length.

For other (non-main) clusters, 117 (47%) of the 248 clusters have lengths from the

HAl procedure that are shorter than the MST length. For all of these 117 clusters, the HAl

length is less than half of the MST length.

The FCC and several state commissions are attempting to use cost proxy models to

assist in determining the amount and allocation of the Universal Service Fund (USF.)

Clusters in low-density areas, where costs are generally above tariffed rates, are particularly

important for detennining the subsidy under USF. Considering all the main clusters in the

two lowest density categories, the HAl procedure gives a total distribution length that is less

than the MST length in 680 (81 %) of the 839 clusters. The HAl length is more than 13% less

than the MST length in 618 (74%) of these clusters.

As a concluding word, it is important to note that the distribution cable lengths in the

HAl model, as in all cost proxy models, have an impact on many of outputs beyond the

investment cost of the distribution cable itself Support structures (e.g., poles, manholes,

trenches, conduits, pull boxes), maintenance costs, associated power and back up power

equipment, and many other factors are affected by the layout and length of the distribution

network. Underestimation of the network length can lead to seriously insufficient support for

explicitly subsidized services and incorrect prices (and hence incorrect price signals for

investment and entry) for unbundled network elements.
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